奇幻城娱乐app_奇幻城娱乐手机版
做最好的网站
来自 奇幻城科技资讯 2019-09-21 08:07 的文章
当前位置: 奇幻城娱乐app > 奇幻城科技资讯 > 正文

中科院深圳先进院形状记忆微阵列研究获新进展

近日,中国科学院深圳先进技术研究院副研究员杜学敏团队成功设计出形状记忆微阵列,并探索了该微阵列结构在液滴浸润特性调控与微结构可控复制方面的应用。该项研究成果以Tunable shape memory polymer mold for multiple microarray replications(《形状记忆高分子模板用于多种微结构可控复制》)为题发表在《材料化学A》(Journal of Materials Chemistry A,2018, DOI: 10.1039/C8TA04763D)上,论文第一作者为课题组研究助理王娟,通讯作者为杜学敏。

近日,中国科学院深圳先进技术研究院副研究员杜学敏团队成功设计出形状记忆微阵列,并探索了该微阵列结构在液滴浸润特性调控与微结构可控复制方面的应用。该项研究成果以Tunable shape memory polymer mold for multiple microarray replications(《形状记忆高分子模板用于多种微结构可控复制》)为题发表在《材料化学A》(Journal of Materials Chemistry A,2018,DOI:10.1039/C8TA04763D)上,论文第一作者为课题组研究助理王娟,通讯作者为杜学敏。

中科院深圳先进院成功设计形状记忆微阵列

中科院深圳先进院形状记忆微阵列研究获新进展

近年来,微纳米阵列结构在抗冰、抗生物粘附及细胞操控等领域应用广泛。然而,传统的微阵列结构制备主要采用光刻技术,不仅制备成本高昂、工艺繁琐、耗时长久,而且所制备的微阵列结构在撤去外力后无法维持可控形变,极大限制了微阵列结构实际应用。为解决该问题,杜学敏团队在前期工作中通过仿生大自然中含羞草等植物可控形变特性(Advanced Materials, 2017, 29, 1702231;Advanced Materials Technologies, 2017, 2, 1700120),结合形状记忆材料成功实现了材料宏观形变维持(Advanced Functional Materials, 2018, 1801027)。前期研究发现,通过调节形状记忆材料所在环境温度,可实现材料的可控拉伸形变,且在外力撤销后仍可维持良好宏观形变,该研究结果为解决上述问题提供了新策略,然而微观尺度的形变特性如何仍有待探索。

近年来,微纳米阵列结构在抗冰、抗生物粘附及细胞操控等领域应用广泛。然而,传统的微阵列结构制备主要采用光刻技术,不仅制备成本高昂、工艺繁琐、耗时长久,而且所制备的微阵列结构在撤去外力后无法维持可控形变,极大限制了微阵列结构实际应用。为解决该问题,杜学敏团队在前期工作中通过仿生大自然中含羞草等植物可控形变特性(Advanced Materials,2017,29,1702231;Advanced Materials Technologies,2017,2,1700120),结合形状记忆材料成功实现了材料宏观形变维持(Advanced Functional Materials,2018,1801027)。前期研究发现,通过调节形状记忆材料所在环境温度,可实现材料的可控拉伸形变,且在外力撤销后仍可维持良好宏观形变,该研究结果为解决上述问题提供了新策略,然而微观尺度的形变特性如何仍有待探索。

9月21日,记者从中国科学院深圳先进技术研究院获悉,该院副研究员杜学敏带领团队成功设计出形状记忆微阵列,并探索了该微阵列结构在液滴浸润特性调控与微结构可控复制应用。该项研究成果近日刊发在《材料化学A》(Journal of Materials Chemistry A)上,论文第一作者为课题组研究助理王娟,通讯作者为杜学敏。

近日,中国科学院深圳先进技术研究院杜学敏副研究员团队成功设计出形状记忆微阵列,并探索了该微阵列结构在液滴浸润特性调控与微结构可控复制应用。该项研究成果以“形状记忆高分子模板用于多种微结构可控复制”为题发表在材料领域权威期刊《材料化学A》上,论文第一作者为课题组研究助理王娟,通讯作者为杜学敏副研究员。

在前期研究基础上,研究团队更进一步探索了形状记忆材料在微观尺度上的形状记忆特性。研究团队采用形状记忆材料制备形状记忆微阵列,发现仅需较小程度拉伸,即可实现该微阵列材料较大表面浸润特性改变,且在10次以上可控浸润特性循环改变后,微观结构的形状回复率仍高达91%。更重要的是,采用一个形状记忆微阵列结构作为模具,通过不同程度拉伸,可复制出一系列连续形变微阵列结构。相关成果不仅为液滴浸润特性调控提供了全新方案,而且也实现了多样化微结构阵列的批量、低成本可控复制,有望促进微阵列结构在抗生物粘附、液滴操控、智能干胶等方向的实际应用。

图片 1

近年来,微纳米阵列结构在抗冰、抗生物粘附及细胞操控等领域应用广泛。但传统的微阵列结构制备主要采用光刻技术,不仅制备成本高昂、工艺繁琐、耗时长久,而且所制备的微阵列结构在撤去外力后无法维持可控形变,极大限制了微阵列结构实际应用。

近年来,微纳米阵列结构在抗冰、抗生物粘附及细胞操控等领域应用广泛。然而,传统的微阵列结构制备主要采用光刻技术,不仅制备成本高昂、工艺繁琐、耗时长久,而且所制备的微阵列结构在撤去外力后无法维持可控形变,极大限制了微阵列结构实际应用。为解决该问题,杜学敏博士研究团队在前期工作中通过仿生大自然中含羞草等植物可控形变特性,结合形状记忆材料成功实现了材料宏观形变维持。前期研究发现,通过调节形状记忆材料所在环境温度,可实现材料的可控拉伸形变,且在外力撤销后仍可维持良好宏观形变,该研究结果为解决上述问题提供了新策略,然而微观尺度的形变特性如何仍有待探索。

该研究工作得到科技部重点研发专项(2017YFA0701303)、广东省引进创新创业团队、广东省特支计划(2015TQ01R292)、粤港科技合作资助计划(2017A050506040)、深圳市孔雀团队以及深圳市基础研究(JCYJ20170307164610282)等的资助。

围绕这一问题,杜学敏研究团队通过仿生大自然中含羞草等植物可控形变特性,结合形状记忆材料成功实现了材料宏观形变维持。前期研究发现,通过调节形状记忆材料所在环境温度,可实现材料的可控拉伸形变,且在外力撤销后仍可维持良好宏观形变。如何仍有待探索。

在前期研究基础上,研究团队更进一步探索了形状记忆材料在微观尺度上的形状记忆特性。研究团队采用形状记忆材料制备形状记忆微阵列,发现仅需较小程度拉伸,即可实现该微阵列材料较大表面浸润特性改变,且在10次以上可控浸润特性循环改变后,微观结构的形状回复率仍高达91%。更重要的是,采用一个形状记忆微阵列结构作为模具,通过不同程度拉伸,可复制出一系列连续形变微阵列结构。相关成果不仅为液滴浸润特性调控提供了全新方案,而且也实现了多样化微结构阵列的批量、低成本可控复制,有望促进微阵列结构在抗生物粘附、液滴操控、智能干胶等方向实际应用。

论文链接

为进一步探索微观尺度的形变特性,研究团队采用形状记忆材料制备形状记忆微阵列,发现仅需较小程度拉伸,即可实现该微阵列材料较大表面浸润特性改变。并且,在10次以上可控浸润特性循环改变后,微观结构的形状回复率仍高达91%。更重要的是,采用一个形状记忆微阵列结构作为模具,通过不同程度拉伸,可复制出一系列连续形变微阵列结构。

图片 2

图片 3

研究人员介绍,相关成果不仅为液滴浸润特性调控提供全新方案,还实现了多样化微结构阵列的批量、低成本可控复制,有望促进微阵列结构在抗生物粘附、液滴操控、智能干胶等方向实际应用。

图1. 形状记忆微柱阵列结构在拉伸至20%,40%及60%后的形貌连续可控变化,及在外力撤销后形变维持;形状记忆微柱阵列可控拉伸形变后表面浸润特性改变及微结构形貌改变

相关论文信息:DOI: 10.1039/C8TA04763D

图片 4

图2. 采用不同拉伸程度的形状记忆微柱阵列复制出来的系列连续形变的PDMS微阵列

本文由奇幻城娱乐app发布于奇幻城科技资讯,转载请注明出处:中科院深圳先进院形状记忆微阵列研究获新进展

关键词: 奇幻城娱乐app